Impact of extracellular nuclease production on the biofilm phenotype of Staphylococcus aureus under in vitro and in vivo conditions.
نویسندگان
چکیده
Recent studies suggest that extracellular DNA promotes biofilm formation in Staphylococcus aureus and, conversely, that extracellular nucleases limit the ability to form a biofilm. S. aureus produces at least two extracellular nucleases, and in the study described in this report, we examined the impact of each of these nucleases on biofilm formation under both in vitro and in vivo conditions. Our results demonstrate that both nucleases impact biofilm formation in the clinical isolate UAMS-1. Under certain in vitro conditions, this impact is negative, with mutation of either or both of the nuclease genes (nuc1 and nuc2) resulting in an enhanced capacity to form a biofilm. However, this effect was not apparent in vivo in a murine model of catheter-associated biofilm formation. Rather, mutation of either or both nuclease genes appeared to limit biofilm formation to a degree that could be correlated with increased susceptibility to daptomycin.
منابع مشابه
Ascorbic acid augments colony spreading by reducing biofilm formation of methicillin resistant Staphylococcus aureus
Objective(s):Staphylococcus aureus is a Gram-positive pathogen, well known for its resistance andversatile lifestyle. Under unfavourable conditions, it adapts biofilm mode of growth. For staphylococcal biofilm formation, production of extracellular polymeric substances (EPS) is a pre-requisite, which is regulated by ica operon-encoded enzymes. This study was designed to know the impact of ascor...
متن کاملBiofilm Formation and Detection of IcaAB Genes in Clinical Isolates of Methicillin Resistant Staphylococcus aureus
Objective(s) Methicillin-resistant Staphylococcus aureus (MRSA) is an important cause of nosocomial and community infections. Biofilm formation, mediated by a polysaccharide intercellular adhesin (PIA) and encoded by the ica operon, is considered to be an important virulence factor in both S. epidermidis and S. aureus. However, the clinical impact of the ica locus and PIA production is less w...
متن کاملBiofilm Formation in Staphylococcus Aureus and its Relation to Phenotypic and Genotypic Criteria
Abstract Background and Objective: Biofilm is a complex microbial community embedded in a self-produced extracellular polymeric matrix. We aimed to study the extent of biofilm formation by S. Areas isolates and its relation to some phenotypic and genotypic criteria. Material and Methods: One hundred-fifty strains of Staphylococcus aureus isolated from Gorgan were studied. Microtiter plate a...
متن کاملAntibacterial Modification of Intravascular Catheter Surface for the Prevention of Catheter-Associated Infection
Objective: Intravascular catheter-associated infection has been increasing hospitalization in post-surgery patients mainly due to microbial colonization of the catheter surface and formation of a superficial biofilm layer. The present study is aimed in developing an effective antibacterial device which can prevent colonization of organisms by modification of catheter. Methods: In the present st...
متن کاملFactors Contributing to the Biofilm-Deficient Phenotype of Staphylococcus aureus sarA Mutants
Mutation of sarA in Staphylococcus aureus results in a reduced capacity to form a biofilm, but the mechanistic basis for this remains unknown. Previous transcriptional profiling experiments identified a number of genes that are differentially expressed both in a biofilm and in a sarA mutant. This included genes involved in acid tolerance and the production of nucleolytic and proteolytic exoenzy...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Infection and immunity
دوره 80 5 شماره
صفحات -
تاریخ انتشار 2012